6 research outputs found

    Time domain based image generation for synthetic aperture radar on field programmable gate arrays

    Get PDF
    Aerial images are important in different scenarios including surface cartography, surveillance, disaster control, height map generation, etc. Synthetic Aperture Radar (SAR) is one way to generate these images even through clouds and in the absence of daylight. For a wide and easy usage of this technology, SAR systems should be small, mounted to Unmanned Aerial Vehicles (UAVs) and process images in real-time. Since UAVs are small and lightweight, more robust (but also more complex) time-domain algorithms are required for good image quality in case of heavy turbulence. Typically the SAR data set size does not allow for ground transmission and processing, while the UAV size does not allow for huge systems and high power consumption to process the data. A small and energy-efficient signal processing system is therefore required. To fill the gap between existing systems that are capable of either high-speed processing or low power consumption, the focus of this thesis is the analysis, design, and implementation of such a system. A survey shows that most architectures either have to high power budgets or too few processing capabilities to match real-time requirements for time-domain-based processing. Therefore, a Field Programmable Gate Array (FPGA) based system is designed, as it allows for high performance and low-power consumption. The Global Backprojection (GBP) is implemented, as it is the standard time-domain-based algorithm which allows for highest image quality at arbitrary trajectories at the complexity of O(N3). To satisfy real-time requirements under all circumstances, the accelerated Fast Factorized Backprojection (FFBP) algorithm with a complexity of O(N2logN) is implemented as well, to allow for a trade-off between image quality and processing time. Additionally, algorithm and design are enhanced to correct the failing assumptions for Frequency Modulated Continuous Wave (FMCW) Radio Detection And Ranging (Radar) data at high velocities. Such sensors offer high-resolution data at considerably low transmit power which is especially interesting for UAVs. A full analysis of all algorithms is carried out, to design a highly utilized architecture for maximum throughput. The process covers the analysis of mathematical steps and approximations for hardware speedup, the analysis of code dependencies for instruction parallelism and the analysis of streaming capabilities, including memory access and caching strategies, as well as parallelization considerations and pipeline analysis. Each architecture is described in all details with its surrounding control structure. As proof of concepts, the architectures are mapped on a Virtex 6 FPGA and results on resource utilization, runtime and image quality are presented and discussed. A special framework allows to scale and port the design to other FPGAs easily and to enable for maximum resource utilization and speedup. The result is streaming architectures that are capable of massive parallelization with a minimum in system stalls. It is shown that real-time processing on FPGAs with strict power budgets in time-domain is possible with the GBP (mid-sized images) and the FFBP (any image size with a trade-off in quality), allowing for a UAV scenario

    Vascular implants – new aspects for in situ tissue engineering

    Get PDF
    Conventional synthetic vascular grafts require ongoing anticoagulation, and autologous venous grafts are often not available in elderly patients. This review highlights the development of bioartificial vessels replacing brain-dead donor- or animal-deriving vessels with ongoing immune reactivity. The vision for such bio-hybrids exists in a combination of biodegradable scaffolds and seeding with immune-neutral cells, and here different cells sources such as autologous progenitor cells or stem cells are relevant. This kind of in situ tissue engineering depends on a suitable bioreactor system with elaborate monitoring systems, three-dimensional (3D) visualization and a potential of cell conditioning into the direction of the targeted vascular cell phenotype. Necessary bioreactor tools for dynamic and pulsatile cultivation are described. In addition, a concept for design of vasa vasorum is outlined, that is needed for sustainable nutrition of the wall structure in large caliber vessels. For scaffold design and cell adhesion additives, different materials and technologies are discussed. 3D printing is introduced as a relatively new field with promising prospects, for example, to create complex geometries or micro-structured surfaces for optimal cell adhesion and ingrowth in a standardized and custom designed procedure. Summarizing, a bio-hybrid vascular prosthesis from a controlled biotechnological process is thus coming more and more into view. It has the potential to withstand strict approval requirements applied for advanced therapy medicinal products

    Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering

    Get PDF
    Melt electro writing (MEW) is a high-resolution 3D printing technique that combines elements of electro-hydrodynamic fiber attraction and melts extrusion. The ability to precisely deposit micro- to nanometer strands of biocompatible polymers in a layer-by-layer fashion makes MEW a promising scaffold fabrication method for all kinds of tissue engineering applications. This review describes possibilities to optimize multi-parametric MEW processes for precise fiber deposition over multiple layers and prevent printing defects. Printing protocols for nonlinear scaffolds structures, concrete MEW scaffold pore geometries and printable biocompatible materials for MEW are introduced. The review discusses approaches to combining MEW with other fabrication techniques with the purpose to generate advanced scaffolds structures. The outlined MEW printer modifications enable customizable collector shapes or sacrificial materials for non-planar fiber deposition and nozzle adjustments allow redesigned fiber properties for specific applications. Altogether, MEW opens a new chapter of scaffold design by 3D printing

    A promising protocol for the endothelialization of vascular grafts in an instrumented rotating bioreactor towards clinical application

    Get PDF
    Pre-endothelialization of a tissue-engineered vascular graft before implantation aims to prevent thrombosis and immunoreactions. This work demonstrates a standardized cultivation process to build a confluent monolayer with human aortal endothelial cells on xenogenous scaffolds. Pre-tested dynamic cultivation conditions in flow slides with pulsatile flow (1 Hz) representing arterial wall conditions were transferred to a newly designed multi-featured rotational bioreactor system. The medium was thickened with 1% methyl cellulose simulating a non-Newtonian fluid comparable to blood. Computational fluid dynamics was used to estimate the optimal volume flow and medium distribution inside the bioreactor chamber for defined wall-near shear stress levels. Flow measurements were performed during cultivation for constant monitoring of the process. Three decellularized porcine arteries were seeded and cultivated in the bioreactor over six days. 1% MC turned out to be the optimal percentage to achieve shear stress values ranging up to 10 dyn/cm2. Vascular endothelial cells formed a continuous monolayer with significant cell alignment in the direction of flow. The presented cultivation protocol in the bioreactor system thus displays a promising template for graft endothelialization and cultivation. Therefore, establishing a key step for future tissue-engineered vascular graft development with a view towards clinical application

    Mobile SARS‑CoV‑2 screening facilities for rapid deployment and university-based diagnostic laboratory

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a public crisis. Many medical and public institutions and businesses went into isolation in response to the pandemic. Because SARS-CoV-2 can spread irrespective of a patient's course of disease, these institutions’ continued operation or reopening based on the assessment and control of virus spread can be supported by targeted population screening. For this purpose, virus testing in the form of polymerase chain reaction (PCR) analysis and antibody detection in blood can be central. Mobile SARS-CoV-2 screening facilities with a built-in biosafety level (BSL)-2 laboratory were set up to allow the testing offer to be brought close to the subject group's workplace. University staff members, their expertise, and already available equipment were used to implement and operate the screening facilities and a certified diagnostic laboratory. This operation also included specimen collection, transport, PCR and antibody analysis, and informing subjects as well as public health departments. Screening facilities were established at different locations such as educational institutions, nursing homes, and companies providing critical supply chains for health care. Less than 4 weeks after the first imposed lockdown in Germany, a first mobile testing station was established featuring a build-in laboratory with two similar stations commencing operation until June 2020. During the 15-month project period, approximately 33,000 PCR tests and close to 7000 antibody detection tests were collected and analyzed. The presented approach describes the required procedures that enabled the screening facilities and laboratories to collect and process several hundred specimens each day under difficult conditions. This report can assist others in establishing similar setups for pandemic scenarios

    Stoma-free Survival After Rectal Cancer Resection With Anastomotic Leakage: Development and Validation of a Prediction Model in a Large International Cohort.

    No full text
    corecore